Unique Conservative Solutions to a Variational Wave Equation

نویسندگان

  • Alberto Bressan
  • Geng Chen
  • Qingtian Zhang
چکیده

Relying on the analysis of characteristics, we prove the uniqueness of conservative solutions to the variational wave equation utt−c(u)(c(u)ux)x = 0. Given a solution u(t, x), even if the wave speed c(u) is only Hölder continuous in the t-x plane, one can still define forward and backward characteristics in a unique way. Using a new set of independent variables X,Y , constant along characteristics, we prove that t, x, u, together with other variables, satisfy a semilinear system with smooth coefficients. From the uniqueness of the solution to this semilinear system, one obtains the uniqueness of conservative solutions to the Cauchy problem for the wave equation with general initial data u(0, ·) ∈ H(IR), ut(0, ·) ∈ L(IR).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Semigroup of Conservative Solutions of the Nonlinear Variational Wave Equation

We prove the existence of a global semigroup for conservative solutions of the nonlinear variational wave equation utt − c(u)(c(u)ux)x = 0. We allow for initial data u|t=0 and ut|t=0 that contain measures. We assume that 0 < κ−1 ≤ c(u) ≤ κ. Solutions of this equation may experience concentration of the energy density (ut + c(u) ux)dx into sets of measure zero. The solution is constructed by int...

متن کامل

Conservative Solutions to a Nonlinear Variational Wave Equation

We establish the existence of a conservative weak solution to the Cauchy problem for the nonlinear variational wave equation utt − c(u)(c(u)ux)x = 0, for initial data of finite energy. Here c(·) is any smooth function with uniformly positive bounded values. Mathematics Subject Classification (2000): 35Q35

متن کامل

Global Conservative Solutions to a Nonlinear Variational Wave Equation

We establish the existence of a conservative weak solution to the Cauchy problem for the nonlinear variational wave equation utt − c(u)(c(u)ux)x = 0, for initial data of finite energy. Here c(·) is any smooth function with uniformly positive bounded values. Mathematics Subject Classification (2000): 35Q35

متن کامل

SADDLE POINT VARIATIONAL METHOD FOR DIRAC CONFINEMENT

A saddle point variational (SPV ) method was applied to the Dirac equation as an example of a fully relativistic equation with both negative and positive energy solutions. The effect of the negative energy states was mitigated by maximizing the energy with respect to a relevant parameter while at the same time minimizing it with respect to another parameter in the wave function. The Cornell pot...

متن کامل

Representation of Dissipative Solutions to a Nonlinear Variational Wave Equation

The paper introduces a new way to construct dissipative solutions to a second order variational wave equation. By a variable transformation, from the nonlinear PDE one obtains a semilinear hyperbolic system with sources. In contrast with the conservative case, here the source terms are discontinuous and the discontinuities are not always crossed transversally. Solutions to the semilinear system...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014